
2024 IEEE INTERNATIONAL WORKSHOP ON MACHINE LEARNING FOR SIGNAL PROCESSING, SEPT. 22–25, 2024, LONDON, UK

COMPONENT-WISE SQUARED FACTORIZATION

Joakim Lefebvre Arnaud Vandaele Nicolas Gillis

University of Mons

ABSTRACT

The component-wise squared factorization decomposes a ma-
trix as the component-wise square of a low-rank matrix. It can
be used to compute the so-called square root rank of a ma-
trix, used in the compact representation of convex polytopes,
but also to represent compactly nonnegative data including
arithmetic circuits. This paper introduces a coordinate de-
scent algorithm to solve this problem, along with an acceler-
ated variant using extrapolation. We show that it compresses
better dense and sparse nonnegative matrices than standard
linear low-rank matrix factorization models such as the trun-
cated singular value decomposition (TSVD) and nonnegative
matrix factorization (NMF). Then, we explore its application
on synthetic matrices generated for experimentation, and also
on the slack matrices of regular n-gons and linear Euclidean
distance matrices.

Index Terms— square root rank, component-wise squared
factorization, sparse matrices

1. INTRODUCTION

Low-rank matrix factorizations (LRMFs) have become stan-
dard tools in data analysis and signal processing. They allow
us to reduce the dimensionality of data by representing it in a
lower dimensional subspace spanned by some basis elements
to be computed. Linear models are the simplest and most
widely used; they allow to identify basis elements that are
combined linearly with each other to approximate the origi-
nal data. For example, given an input matrix M ∈ Rm×n

and a factorization rank r, the well-known truncated singular
value decomposition (TSVD) finds matrices U ∈ Rm×r and
V ∈ Rr×n that minimizes the least squares error between M
and its low-rank approximation UV , that is, that minimizes
∥M − UV ∥2F . Another closely related model is nonnegative
matrix factorization (NMF) where U and V are constrained
to be component-wise nonnegative, which makes sense for
physical and probabilistic interpretations; see, e.g., [1].

However, some applications and real-world phenomena
cannot be explained linearly, so nonlinear matrix decomposi-
tions (NMDs) [2, 3, 4] have recently been introduced to ex-

Authors acknowledge the support by the European Union (ERC consol-
idator, eLinoR, no 101085607).

tend the capabilities of LRMFs. An important class of NMDs
is the following: given a nonlinear function f(·), the ma-
trix M is approximated by the matrix f(UV ). This paper
focuses on the component-wise squared factorization (CSF)
where f(X) = X .2 is the component-wise square of ma-
trix X . This choice is of particular importance since it leads
to an unconstrained model designed to approximate nonneg-
ative data. Let us define CSF more formally: given a ma-
trix M ∈ Rm×n and a natural number r ≤ min(m,n), find
U ∈ Rm×r and V ∈ Rr×n such that

M ≈ (UV ).2 = (UV ) ◦ (UV ), (1)

where ◦ is the component-wise product between two matri-
ces. In other words, the CSF problem looks for two matri-
ces, U and V , such that the input matrix M is close to the
Hadamard product, or element-wise product, of the matrix
UV with itself. In order to minimize the difference between
M and (UV ).2, we consider the least squares error, and our
goal is to solve

min
U∈Rm×r,V ∈Rr×n

∥∥M − (UV ).2
∥∥2
F
. (2)

In addition to its application in compressing data (see Sec-
tion 3), the CSF problem also plays a role in two other appli-
cations described in the following two paragraphs.
1) Circuits. Probabilistic circuits need to represent nonneg-
ative probabilistic functions. The most popular models are
linear (e.g., Gaussian mixture models) but they have limited
expressiveness. In this context, CSF allows us to represent
much more compactly such circuits; in fact it was proved they
can be exponentially more compact [5, 4], that is, some cir-
cuits requires an exponential number of parameters for addi-
tive mixtures while squared substractive mixtures leads to a
polynomial number.
2) Hadamard square root of a matrix. Given a nonnega-
tive matrix M , a Hadamard square root of M , denoted

√
M ,

is a matrix of the same size as M whose (i, j)th entry is√
Mij or −

√
Mij . The minimum rank among all Hadamard

square roots of M is called the square root rank and denoted
rank√(M). For example, the following matrix M has rank 3
and it has a Hadamard square root of rank 2:

M =

4 0 1
1 1 1
1 1 0

 ,
√
M =

−2 0 1
−1 1 1
1 1 0

 .



The square root rank of a matrix has applications in represent-
ing polytopes compactly; see [6, 7] for details. For a matrix
M ∈ Rm×n, there exist 2nnz(M) possible Hadamard square
root matrices, where nnz(M) is the number of non-zero en-
tries of M , which makes the computation of the square root
rank via brute force intractable. This exponential complexity
cannot be avoided, since it was shown in [7] that computing
the square root rank of a matrix is NP-hard. Hence, it makes
sense to develop alternative heuristic methods to estimate the
square root rank of a matrix. This can be done by solving
CSF: if there exists a solution to (2) with a zero objective,
that is, M = (UV ).2, then r is an upper bound on the square
root rank of M .

Outline and contribution of the paper. The paper is or-
ganized as follows. In Section 2, we introduce a method for
solving the CSF problem (2). To the best of our knowledge,
this is the first time an optimization algorithm is specifically
designed for this problem. In Section 3, we empirically show
its effectiveness to compress dense and sparse matrices with
various experiments on synthetic and real-world data sets. In
Section 3.2, we show how to use our algorithm to identify the
square root rank of matrices.

2. A COORDINATE DESCENT APPROACH

The CSF factorization problem (2) is nonconvex and, unlike
the TSVD and NMF, the problem remains nonconvex even if
U or V is fixed. However, we will draw inspiration from al-
gorithms developed in the context of NMF [1], and adopt an
alternating scheme by optimizing one factor at a time. Our
problem is symmetric in the sense that if we have an algo-
rithm to optimize V given U , then we have an algorithm to
optimize U given V since M ≈ (UV ).2 is equivalent to
M⊤ ≈ (V ⊤U⊤).2. Moreover, the problem in V is separa-
ble by columns since

∥∥M − (UV ).2
∥∥2
F
=

n∑
j=1

∥∥∥(UV (:, j))
.2 −M(:, j)

∥∥∥2
2
. (3)

Therefore, in the remainder of this section, we will only elab-
orate on an algorithm for solving

min
V (:,j)

∥∥∥(UV (:, j))
.2 −M(:, j)

∥∥∥2
2
. (4)

The problem (4) is a minimization problem to which we will
refer as a Component-wise Squared Least Squares (CSLS)
problem, whose general form is

min
x∈Rr

∥∥∥(Ax)
.2 − b

∥∥∥2
2
, (5)

with A ∈ Rm×r and b ∈ Rm. One iteration of the gen-
eral alternating scheme corresponds to the update of all the
columns V (:, j), for all j, followed by the update of all the

Algorithm 1: Alternating scheme for the CSF prob-
lem

Input: M ∈ Rm×n, initial matrices U ∈ Rm×r ,
V ∈ Rr×n.

Output: U ∈ Rm×r and V ∈ Rr×n s.t. M ≈ (UV ).2

1: for k ← 1 to maxiter do
2: for j ← 1 to n do
3: V (:, j) = CSLS(M(:, j), U, V (:, j)) (Algo. 2)
4: end for
5: for i← 1 to m do
6: U(i, :) = CSLS(M(i, :)⊤, V ⊤, U(i, :)⊤)⊤ (Algo. 2)
7: end for
8: end for

rows U(i, :), for all i. The pseudo-code of the alternating
scheme for the CSF problem (2) is detailed in Algorithm 1.

Since coordinate descent (CD) has been successfully ap-
plied to many LRMF problems, e.g., [8, 9, 10, 11, 12], we use
this approach to solve CSLS (5). It consists in updating one
variable at a time while the others are fixed. In our case, if
we fix all the entries of x except the pth one, the one-variable
problem is

min
xp∈R

∥∥∥(A(:, p)xp + d)
.2 − b

∥∥∥2
2
, (6)

where d =
∑r

k=1,k ̸=p A(:, k)xk. After expanding the differ-
ent terms, we observe that solving (6) amounts to minimize a
fourth-degree polynomial. It can be achieved by identifying
the roots of its first derivative, that is, by solving

c3x
3
p + c2x

2
p + c1xp + c0 = 0, (7)

where

• c3 = 4
∑m

i=1 A
4
ip,

• c2 = 12
∑m

i=1 A
3
ipdi,

• c1 = 4
∑m

i=1 3A
2
ipd

2
i −A2

ipbi, and

• c0 = 4
∑m

i=1 Aipd
3
i −Aipdibi.

Computing the different roots of a third degree polynomial
can be done with Cardano’s method [13] in O(1) operations.
At most three real roots will be identified and we must find
the one minimizing the objective function (5).

The computation of the four coefficients in (7) can be
done in O(m) operations when d is available. To do so with-
out increasing the computational complexity, we can precom-
pute d = Ax and modify it carefully when updating the pth
entry in order to have the correct residual vector. The pseudo-
code of the CD scheme for (5) is given in Algorithm 2

With the two loops in Algorithm 2, updating once every
entry of one column of V can be done in O(mr) operations
and the update of every entry of one row of U can be done in
O(nr). Overall, the algorithmic complexity of one iteration
of our algorithm is O(mnr), as for most LRMFs.



Algorithm 2: CD scheme for the CSLS problem (5)
Input: A ∈ Rm×r , b ∈ Rm, x ∈ Rr

Output: x ∈ Rr solving (5)
1: d = Ax
2: for p← 1 to r do
3: d = d−A(:, p)xp

4: c0, c1, c2, c3 = 0, 0, 0, 0
5: for i← 1 to m do
6: c3 = c3 + 4A4

ip

7: c2 = c2 + 12A3
ipdi

8: c1 = c1 + 4(3A2
ipd

2
i −A2

ipbi)
9: c0 = c0 + 4(Aipd

3
i −Aipdibi)

10: end for
11: xp ← cardanomethod(c3, c2, c1, c0)
12: d = d+A(:, p)xp

13: end for

Initialization We use two initializations for U and V :
1) Random initialization: each entry of U and V are drawn
from the Gaussian distribution N(0, 1). When using this ini-
tialization, the initial approximation may be very different
from M itself. To prevent this, we scale our initial U and V
compared to M as follows: first compute the optimal scaling

λ = argmin
λ
∥M − λ(UV ).2∥2F =

⟨(UV ).2,M⟩
⟨(UV ).2, (UV ).2⟩

, (8)

where ⟨A,M⟩ =
∑

i,j Ai,jMi,j is the inner product between
two matrices. Then we scale: U ← λ1/4U and V ← λ1/4V .
2) TSVD-based initialization: Given the TSVD M ≈ UΣV ⊤

with U ∈ Rm×r, Σ ∈ Rr×r and V ∈ Rr×n, we let U =
U
√
Σ and V =

√
ΣV .

Acceleration via extrapolation To speed up our algorithm,
we use an extrapolated coordinate descent; see, e.g., [14, 15]
where it was successfully applied to NMF. This requires a
simple modification of the algorithm as follows:

V (:, j)k+1 = CSLS
(
M(:, j), U, Z(:, j)k

)
where

Z(:, j)k = V (:, j)k + βk(V (:, j)k − V (:, j)k−1),

and βk ∈ [0, 1) is an extrapolation parameter. We update
the rows of U in the same way. To choose the values of βk,
we draw inspiration from [14] and dynamically update it as
described in Algorithm 3. The idea is to increase βk as long
as the objective function decreases and reduce it otherwise.

To determine good values for the parameters β1, γ̂, γ, and
η in Algorithm 3, we conduct preliminary experiments with
various sets of values. The best values we found for our ex-
trapolation more or less agree with those from [14], except
that a smaller β yielded better results in our case. Therefore,
we chose the parameters (γ, γ̂) = (1.05, 1.01), β1 = 0.3, and
η = 1.5. These values are the best on average on several ma-
trices of different sizes but could be fine-tuned when using a

Algorithm 3: Update of βk

Input: β1 ∈ (0, 1), 1 < γ̂ < γ < η.
1: β̂ = 1.
2: if the error (9) decreases at iteration k then
3: βk+1 ← min(β̂, γβk).
4: β̂ ← min(1, γ̂β̂).
5: else
6: βk+1 ← βk

η
; β̂ ← βk−1.

7: end if

0 50 100 150
10−0.5

10−0.4

10−0.3

10−0.2

10−0.1

Iterations
A

ve
ra

ge
re

la
tiv

e
er

ro
r

CD
CD extrapoled

Fig. 1: Average relative errors ∥M − (UV ).2∥F /∥M∥F of
CD and its extrapolation, for 10 randomly generated matrices
M ∈ R200×200 with r = 10; see Section 3.2.1 for details.

particular data set. Fig. 1 illustrates the acceleration effect of
the extrapolation on randomly generated matrices.

We have also compared the execution times in the context
of exact factorization (see Section 3.2 for details):
1. To factorize 8 slack matrices of n-gons, the extrapolated
CD took 165 seconds compared to 989 for CD.
2. To factorize 8 linear Euclidean distance matrices, the ex-
trapolated CD took 313 seconds compared to 713 for CD.

Therefore, we will only use our extrapolated algorithm to
perform the tests in Section 3.

3. NUMERICAL EXPERIMENTS

The codes are available online from https://github.
com/Riipou/CSF and implemented in Julia. We will make
the code available on github upon acceptance of the paper. All
these tests are conducted on a Apple 11-core M3 Pro 18 GB
RAM.

3.1. Compression of synthetic and real data

We test our algorithm on three datasets, see Table 2, as well as
randomly generated matrices. In the following, we compare



CSF CSF NMF NMF TSVD(rdm init.) (SVD init.) (rdm init.) (SVD init.)

CBCL
r = 10 14.8± 0.0 14.8 15.2± 0.0 15.2 14.9
r = 20 11.6± 0.0 11.5 12.2± 0.0 12.2 11.3
r = 49 7.7± 0.0 7.3 8.0± 0.0 8.0 7.4

CBCL
r = 10 69.0± 0.0 68.9 89.6± 0.0 89.7 89.3facial
r = 20 39.5± 0.1 39.2 81.0± 0.1 81.2 80.2features

TDT2 r = 10 56.2± 0.5 56.2 70.6± 0.1 70.7 69.9
r = 20 40.6± 0.4 42.5 59.0± 0.2 58.9 58.0

Sparse r = 10 74.0± 0.4 74.0± 0.3 89.7± 0.2 89.7± 0.2 88.7± 0.2
Matrix r = 20 50.8± 0.5 50.7± 0.5 82.8± 0.2 82.8± 0.3 80.0± 0.2

Table 1: Relative error (in percent) of NMF and CSF on CBCL, CBCL facial features, TDT2, and ten distinct sparse 200×200
matrices generated randomly using the Julia function sprand.

Size #nnz Sparsity
CBCL 361× 2429 876869 0%
CBCL

361× 100 5735 84.11%facial features
TDT2 299× 909 36835 86.45%

Table 2: Datasets

the relative error of our method,

relative error =

∥∥M − (UV )
.2 ∥∥

F

∥M∥F
, (9)

with that of NMF and TSVD. For NMF and CSF methods, we
compute the average relative error over 10 different random
initializations, as well as the error for an SVD initialization
for different values of r. In this section, we stop NMF and
CSF algorithms after one minute.

The results of our tests are available in Table 1. On the
dense data set, CBCL, CSF yields slightly better results, al-
though the errors of all methods are comparable. For sparse
data sets, CSF has a relative error at least 13% smaller than
NMF and TSVD. In some cases, the improvement is signifi-
cant, e.g., for the CBCL facial features with r = 20, from an
error of 81% for NMF and 80% for TSVD to 39% for CSF.

Let us perform two additional experiments. The CBCL
facial features dataset contains the 85%-sparse facial features
of CBCL obtained via NMF with r = 100. Fig. 2 compares
the average relative error for r ∈ {10, 20, 30, 40}. We ob-
serve that CSF is significantly more effective for compression
than NMF and TSVD.

Finally, we test our algorithm on randomly generated
sparse matrices. For each test, we generate 10 sparse matri-
ces randomly using Julia function sprand. We compare the
average errors of the three methods with different levels of
sparsity (see Fig 3). Again, CSF is significantly more efficient
to compress sparse matrices than NMF and TSVD.

10 15 20 25 30 35 40

20

40

60

80

100

Rank

A
ve

ra
ge

re
la

tiv
e

er
ro

r

CSF
NMF
TSVD

Fig. 2: Comparing the average relative error on the CBCL
facial features using random initialization.

50 60 70 80 90 100

70

75

80

85

90

Sparsity (%)

CSF
NMF
TSVD

Fig. 3: Average relative error: NMF vs. CSF vs. TSVD on
200 × 200 sparse matrices, using random initialization, on a
rank-10 factorization.

3.2. Exact Factorizations

In this section, we perform numerical experiments to identify
exact factorizations M = (UV ).2. Numerically, we report
that an exact factorization is found when the relative error (9)
is less than 10−3. To do so, we run the algorithm as long



as the relative error decreases by at least a predefined factor
α ∈ (0, 1) every ten iterations.

3.2.1. Tests on synthetic data

First, we generate synthetic matrices M = (UV ).2 using ran-
domly generated U ∈ Rm×2 and V ∈ R2×n. To randomly
generate U and V with the Julia function randn. We use
m = n = [5, 10, 50, 100], maxiter = 104 and α = 0.99. We
repeat this test 100 times for each matrix size; see Table 3.

Matrix size Success Rate Success rate
(random initialization) (SVD initialization)

n = 5 48% 50%
n = 10 57% 50%
n = 50 83% 73%
n = 100 85% 77%

Table 3: Comparison of CD success rates: Random vs SVD
initialization for rank-2 CSF on M ∈ Rn×n.

We notice that the random initialization appears to work
better, but overall, regardless of the initialization, our algo-
rithm manages to find a factorization for r = 2 for all tested
matrix sizes.

We conduct another test on synthetic data, generating a
matrix M randomly for various sizes, similar to the previ-
ous experiment. For each matrix, we execute the algorithm
10 times using random initialization and count the number of
times the algorithm achieves a successful factorization. We
realize this test on matrix M ∈ Rn×n for n = [5, 10, 50, 100],
using α = 0.9999 and maxiter = 104. Results are available
in Table 4. We observe that the algorithm manages to find

Matrix size n = 5 n = 10 n = 50 n = 100
Success Rate

60% 70% 100% 90%
α = 0.9999

Table 4: Success rates of CD with random initialization
across 10 executions for rank-2 CSF on M ∈ Rn×n.

at least one good factorization. However, for the same rank,
larger matrices lead to a larger success rate; this can be ex-
plained because a larger matrix contains more samples.

3.2.2. Square root rank of slack matrices

As defined in Section 1, the square root rank of a matrix M
is the smallest r ∈ N such that an exact factorization M =
(UV ).2 exists with U ∈ Rm×r and V ∈ Rr×n. This quantity
is important in the field of extended polytope formulations, as
the square root rank is an upper bound on the psd-rank of a
matrix [7, 12].

Slack matrices of n-gons An important category of poly-
topes are the regular polygons for which we use our algorithm
to identify the square root rank of their slack matrix. On slack
matrices of size n = 3, ..., 10 and for different values of r, we
performed 104 runs of our method using random initializa-
tion and reported the lowest relative error in Table 5. These
results, together with the fact that rankpsd(M) ≤ rank√(M),
allowed us to propose a conjecture on the square root rank of
the different slack matrices, see Table 6.

Matrix size r Success rate Lowest error
(random initialization) (9)

m = n = 10
9 49.6% 1.00 · 10−6

8 1.2% 1.19 · 10−4

7 0.0% 3.93 · 10−3

m = n = 9
8 41.1% 9.27 · 10−7

7 0.3% 2.97 · 10−4

6 0.0% 8.53 · 10−3

m = n = 8
7 36.8% 1.60 · 10−7

6 0.1% 3.62 · 10−6

5 0.0% 1.34 · 10−2

m = n = 7
6 28.3% 1.55 · 10−7

5 0.0% 1.55 · 10−3

4 0.0% 2.44 · 10−2

m = n = 6
5 27.9% 1.27 · 10−7

4 0.1% 4.82 · 10−6

3 0.0% 5.02 · 10−2

m = n = 5
4 0.0% 1.09 · 10−3

3 0.0% 6.841 · 10−2

m = n = 4
3 59.4% 8.24 · 10−9

2 0.0% 1.69 · 10−1

m = n = 3 2 0.0% 3.333 · 10−1

Table 5: Tests on slack matrix of the regular n-gon with α =
0.9999.

n 3 4 5 6 7 8 9 10
psd-rank [12] 3 3 4 4 4 or 5 ≤ 4 ? ≤ 5

square root rank 3 3 5 4 ≤ 6 ≤ 6 ≤ 7 ≤ 8
(conjecture)

Table 6: Conjecture on the value of the square root rank for
the slack matrices of the regular n-gon for n = 3 to n = 10.

Linear Euclidean Distance Matrices (LEDMs) The LEDM
of size n is a n-by-n matrix defined by:

M(i, j) = (i− j)2, for i, j = 1, 2, . . . , n. (10)

Unlike the slack matrices of the n-gons for which the true
square root rank value is not known, the square root rank of
the LEDM of any dimension is 2, see [7]. We used our method
on LEDMs of size n = 3, ..., 10 with r = 2 and r = 3 and re-
ported the results in Table 7. These results are consistent with



the theory and illustrate that our method is able to provide
insights into the value of the square root rank of matrices.

Matrix size r Success rate Lowest error
(Random initialization) (9)

10× 10 3 36.1% 7.84 · 10−16

2 35.6% 3.88 · 10−16

1 0.0% 0.66
9× 9 3 38.8% 4.43 · 10−16

2 58.1% 2.83 · 10−16

1 0.0% 0.66
8× 8 3 43.0% 3.40 · 10−16

2 38.9% 2.42 · 10−16

1 0.0% 0.66
7× 7 3 49.0% 6.10 · 10−16

2 63.0% 3.53 · 10−16

1 0.0% 0.66
6× 6 3 56.4% 3.26 · 10−16

2 43.8% 1.75 · 10−16

1 0.0% 0.66
5× 5 3 62.8% 4.13 · 10−16

2 68.9% 1.73 · 10−16

1 0.0% 0.66
4× 4 3 77.2% 1.43 · 10−8

2 74.5% 4.23 · 10−11

1 0.0% 0.66
3× 3 3 100.0% 3.41 · 10−9

2 85.4% 6.45 · 10−8

1 0.0% 0.67

Table 7: Tests on linear Euclidean distance matrices.

4. CONCLUSION

In this paper, we studied the component-wise squared factor-
ization (CSF) problem, a recent nonlinear matrix decompo-
sition model to approximate nonnegative matrices. To solve
this non-convex problem, we designed a coordinate descent
scheme for which the one-variable minimization subproblem
is a fourth-degree polynomial. In addition, we proposed an
accelerated variant using extrapolation, which is faster and
provides more accurate solutions. Based on numerical exper-
iments on synthetic and real data sets, we observed that CSF
is particularly effective for compressing sparse matrices com-
pared to NMF and TSVD. We also empirically showed that
our algorithm is able to factorize, up to machine precision,
slack matrices, and hence provides an estimate of their square
root rank.

5. REFERENCES

[1] N. Gillis, Nonnegative matrix factorization, SIAM,
Philadelphia, 2020.

[2] N. Whiteley, A. Gray, and P. Rubin-Delanchy, “Ma-
trix factorisation and the interpretation of geodesic dis-
tance,” NeurIPS, vol. 34, pp. 24–38, 2021.

[3] L. K. Saul, “A nonlinear matrix decomposition for min-
ing the zeros of sparse data,” SIAM J. Math. Data Sci.,
vol. 4, no. 2, pp. 431–463, 2022.

[4] L. Loconte, A. M. Sladek, S. Mengel, M. Trapp, A.
Solin, N. Gillis, and A. Vergari, “Subtractive mixture
models via squaring: Representation and learning,” in
ICLR, 2024.

[5] L. Loconte, N. Di Mauro, R. Peharz, and A. Vergari,
“How to turn your knowledge graph embeddings into
generative models,” NeurIPS, 2023.

[6] T. Lee and Z. Wei, “The square root rank of the
correlation polytope is exponential,” arXiv preprint
arXiv:1411.6712, 2014.

[7] H. Fawzi, J. Gouveia, P. A. Parrilo, R. Z. Robinson,
and R. R. Thomas, “Positive semidefinite rank,” Math.
Prog., vol. 153, no. 1, pp. 133–177, July 2015.

[8] A. Cichocki and A.-H. Phan, “Fast local algorithms
for large scale nonnegative matrix and tensor factoriza-
tions,” IEICE Trans. Fundam. Electron. Comput. Sci.,
vol. 92, no. 3, pp. 708–721, 2009.

[9] N. Gillis and F. Glineur, “Accelerated multiplicative
updates and hierarchical als algorithms for nonnega-
tive matrix factorization,” Neural Comput., vol. 24, pp.
1085–1105, 2012.

[10] C.-J. Hsieh and I. S. Dhillon, “Fast coordinate descent
methods with variable selection for non-negative matrix
factorization,” in ACM SIGKDD, 2011, pp. 1064–1072.

[11] A. Vandaele, N. Gillis, Q. Lei, K. Zhong, and I. Dhillon,
“Efficient and non-convex coordinate descent for sym-
metric nonnegative matrix factorization,” IEEE Trans.
Signal Process., vol. 64, no. 21, pp. 5571–5584, 2016.

[12] A. Vandaele, F. Glineur, and N. Gillis, “Algorithms for
positive semidefinite factorization,” Computat. Optim.
Appl., vol. 71, no. 1, pp. 193–219, 2018.

[13] G. Cardano, Ars magna or the rules of algebra, Dover
Publications, 1968.

[14] A. M. S. Ang and N. Gillis, “Accelerating nonneg-
ative matrix factorization algorithms using extrapola-
tion,” Neural Comput., vol. 31, pp. 417–439, 2019.

[15] L. T. Hien, D. N. Phan, and N. Gillis, “An inertial
block majorization minimization framework for nons-
mooth nonconvex optimization,” Journal of Machine
Learning Research, vol. 24, no. 18, pp. 1–41, 2023.


